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a b s t r a c t

This paper is concerned with uniform stabilization and social optimality for general mean field linear–
quadratic control systems, where subsystems are coupled via individual dynamics and costs, and the
state weight is not assumed with the definiteness condition. For the finite-horizon problem, we first
obtain a set of forward–backward stochastic differential equations (FBSDEs) from variational analysis,
and construct a feedback-type control by decoupling the FBSDEs. For the infinite-horizon problem,
by using solutions to two Riccati equations, we design a set of decentralized control laws, which is
further proved to be asymptotically social optimal. Some equivalent conditions are given for uniform
stabilization of the systems in different cases, respectively. Finally, the proposed decentralized controls
are compared to the asymptotic optimal strategies in previous works.

© 2020 Published by Elsevier Ltd.
1. Introduction

Mean field games have drawn increasing attention in many
ields including system control, applied mathematics and eco-
omics (Bensoussan, Frehse, & Yam, 2013; Caines, Huang, & Mal-
amé, 2017; Gomes & Saude, 2014). The mean field game involves
very large population of small interacting players with the

eature that while the influence of each one is negligible, the
mpact of the overall population is significant. By combining
ean field approximations and individual’s best response, the
imensionality difficulty is overcome. Mean field games and con-
rol have found wide applications, including smart grids (Chen,
usic, Busic, & Meyn, 2017; Li, Ma, Li, Chen, & Gu, 2019; Ma,
allaway, & Hiskens, 2013), finance, economics (Chan & Sircar,
015; Guéant, Lasry, & Lions, 2011; Wang & Huang, 2019), and
ocial sciences (Bauso, Tembine, & Basar, 2016), etc.
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By now, mean field games have been intensively studied in
the LQ (linear–quadratic) framework (Bensoussan, Sung, Yam, &
Yung, 2016; Elliott, Li, & Ni, 2013; Huang, Caines, & Malhamé,
2007; Li & Zhang, 2008; Moon & Basar, 2017; Wang & Zhang,
2012b). Huang et al. developed the Nash certainty equivalence
(NCE) based on the fixed-point method and designed an ϵ-Nash
equilibrium for mean field LQ games with discount costs by the
NCE approach (Huang et al., 2007). The NCE approach was then
applied to the cases with long run average costs (Li & Zhang,
2008) and with Markov jump parameters (Wang & Zhang, 2012b),
respectively. The works (Bensoussan et al., 2016; Carmona &
Delarue, 2013) employed the adjoint equation approach and the
fixed-point theorem to obtain sufficient conditions for the exis-
tence of the equilibrium strategy over a finite horizon. For other
aspects of mean field games, readers are referred to Carmona
and Delarue (2013), Huang, Malhamé, and Caines (2006), Lasry
and Lions (2007) and Yin, Mehta, Meyn, and Shanbhag (2012) for
nonlinear mean field games, Weintraub, Benkard, and Van Roy
(2008) for oblivious equilibrium in dynamic games, Huang (2010)
and Wang and Zhang (2012a) for mean field games with major
players, Huang and Huang (2017) and Moon and Basar (2017) for
robust mean field games.

Besides noncooperative games, social optima in mean field
models have also attracted much interest. The social optimum
control refers to that all the players cooperate to optimize the
common social cost—the sum of individual costs, which is a type
of team decision problem (Ho, 1980). Huang et al. considered so-
cial optima in mean field LQ control, and provided an asymptotic
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team-optimal solution (Huang, Caines, & Malhamé, 2012). Wang
and Zhang (2017) investigated the mean field social optimal
problem where the Markov jump parameter appears as a com-
mon source of randomness. For further literature, see Huang and
Nguyen (2016) for social optima in mixed games, Arabneydi and
Mahajan (2015) for team-optimal control with finite population
and partial information.

Most previous results on mean field games and control were
given by using the fixed-point method (Cardaliaguet, 2012; Car-
mona & Delarue, 2013; Huang et al., 2007, 2012; Li & Zhang,
2008; Wang & Zhang, 2012a, 2017). However, the fixed-point
analysis (e.g., from the contraction mapping theorem) is some-
times conservative, particularly for high-dimensional systems. In
this paper, we solve the problem by decoupling directly high-
dimensional forward–backward stochastic differential equations
(FBSDEs). In recent years, some progress has been made for study
of the optimal LQ control by tackling the FBSDEs. See Sun, Li,
and Yong (2016), Zhang, Qi, and Fu (2019), Zhang and Xu (2017)
and Yong (2013) for details.

This paper investigates uniform stabilization and social op-
timality for linear–quadratic mean field control systems, where
subsystems (agents) are coupled via dynamics and individual
costs. The state weight Q is not limited to positive semi-definite.
This model can be taken as a generation of robust mean field
control problems (Huang & Huang, 2017; Moon & Basar, 2017;
Wang & Huang, 2017). Since the weight Q in the cost functional
is indefinite, the prior boundedness of the state is not implied di-
rectly by the finiteness of the cost, which brings about additional
difficulty to show the social optimality of decentralized control.

For the finite-horizon social control problem, we first obtain
a set of FBSDEs by examining the variation of the social cost,
and give centralized feedback-type control laws by decoupling
the FBSDEs. With mean field approximations, we design a set of
decentralized control laws. By exploiting the uniform convexity
property of the problem, the decentralized controls are further
shown to have asymptotic social optimality. For the infinite-
horizon case, we design a set of decentralized control laws by
using solutions of two Riccati equations, which is shown to be
asymptotically social optimal. Some equivalent conditions are
further given for uniform stabilization of all the subsystems when
the state weight Q is positive semi-definite or only symmetric.
Furthermore, the explicit expressions of optimal social costs are
given in terms of the solutions to two Riccati equations, and
the proposed decentralized control laws are compared to the
feedback strategies in previous works. Finally, some numerical
examples are given to illustrate the effectiveness of the proposed
control laws.

The main contributions of the paper are summarized as fol-
lows.

• We first obtain necessary and sufficient existence conditions
of finite-horizon centralized optimal control by variational
analysis, and then design a feedback-type decentralized con-
trol by tackling FBSDEs with mean field approximations.

• In the case Q ≥ 0, the necessary and sufficient conditions
are given for uniform stabilization of the systems with the
help of the system’s observability and detectability.

• In the case that Q is indefinite, the necessary and sufficient
conditions are given for uniform stabilization of the systems
using the Hamiltonian matrices.

• The asymptotically optimal decentralized controls are ob-
tained under very basic assumptions (without verifying the
fixed-point condition). The corresponding social costs are
explicitly given by virtue of the solutions to two Riccati
equations.
 t
The organization of the paper is as follows. In Section 2, the
socially optimal control problem is formulated. In Section 3, we
construct asymptotically optimal decentralized control laws by
tackling FBSDEs for the finite-horizon case. In Section 4, for the
infinite-horizon case, the asymptotically optimal controls are de-
signed and analyzed, and some equivalent conditions are further
given for uniform stabilization in different cases. In Section 5,
some numerical examples are given to show the effectiveness of
the proposed control laws. Section 6 concludes the paper.

The following notation will be used throughout this paper.
∥ · ∥ denotes the Euclidean vector norm or Frobenius matrix
norm. For a vector z and a matrix Q , ∥z∥2

Q = zTQz, tr(Q ) is
the trace of the matrix Q , and Q > 0 (Q ≥ 0) means that Q
is positive definite (positive semidefinite). For two vectors x, y,
⟨x, y⟩ = xTy. C([0, T ],Rn) is the space of all Rn-valued continuous
functions defined on [0, T ], and Cρ/2([0, ∞),Rn) is a subspace
of C([0, ∞),Rn) which is given by {f |

∫
∞

0 e−ρt
∥f (t)∥2dt < ∞}.

L2F (0, T ;Rk) is the space of all F-adapted Rk-valued processes x(·)
such that E

∫ T
0 ∥x(t)∥2dt < ∞. For convenience of presentation,

we use C, C1, C2, . . . to denote generic positive constants, which
may vary from place to place.

2. Problem description

Consider a large population system with N agents. Agent i
evolves by the following stochastic differential equation:

dxi(t) = [Axi(t) + Bui(t) + Gx(N)(t) + f (t)]dt
+ σ (t)dWi(t), 1 ≤ i ≤ N,

(1)

where xi ∈ Rn and ui ∈ Rr are the state and input of the ith agent.
x(N)(t) =

1
N

∑N
j=1 xj(t), f , σ ∈ Cρ/2([0, ∞),Rn). {Wi(t), 1 ≤ i ≤ N}

are a sequence of independent 1-dimensional Brownian motions
on a complete filtered probability space (Ω,F, {Ft}0≤t≤T ,P). The
cost function of agent i is given by

Ji(u) = E
∫

∞

0
e−ρt

{xi(t) − Γ x(N)(t) − η(t)
2
Q

+ ∥ui(t)∥2
R

}
dt,

(2)

where ρ > 0 and Q , R are symmetric matrices with appropriate
dimensions. Q is allowed to be indefinite. R > 0, and η ∈

Cρ/2([0, ∞),Rn). Denote u = {u1, . . . , uN}. The decentralized
control set is given by

Ud,i =

{
ui

⏐⏐ ui(t) is adapted to σ (xi(s), 0 ≤ s ≤ t),

E
∫

∞

0
e−ρt

∥ui(t)∥2dt < ∞

}
.

For comparison, define the centralized control sets as

Uc,i =

{
ui

⏐⏐ ui(t) is adapted to σ {

N⋃
i=1

F i
t},

E
∫

∞

0
e−ρt

∥ui(t)∥2dt < ∞

}
,

nd Uc =
{
(u1, . . . , uN )

⏐⏐ui belongs to Uc,i, 1 ≤ i ≤ N
}
, where

i
t = σ (xi(0),Wi(s), 0 ≤ s ≤ t), i = 1, . . . ,N .
In this paper, we mainly study the following problem.

P). Seek a set of decentralized control laws to optimize social cost
or the system (1)–(2), i.e., infui∈Ud,i Jsoc, where Jsoc =

∑N
i=1 Ji(u).

emark 2.1. The related results can be extended to the case of
ultidimensional Brownian motions trivially. Here we consider

hat σ (t) is time-varying and satisfies some growth rate. For
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convenience of the statement, we assume Wi is scalar and σ ∈

Cρ/2([0, ∞),Rn). For the finite-horizon problem, our results still
hold for the case that the matrices A, B,G, . . . depend on t .

Assume
(A1) The initial states of agents xi(0), i = 1, . . . ,N are mutu-
ally independent and have the same mathematical expectation.
xi(0) = xi0, Exi(0) = x̄0, i = 1, . . . ,N . There exists a constant C0
(independent of N) such that max1≤i≤N E∥xi(0)∥2 < C0.

3. The finite-horizon problem

For the convenience of design, we first consider the following
finite-horizon problem.

(P1) inf
u∈L2F (0,T ;Rnr )

JFsoc(u),

here JFsoc(u) =
∑N

i=1 J
F
i (u) and Ft = σ {

⋃N
i=1 F

i
t}. Here

JFi (u) = E
∫ T

0
e−ρt

{xi(t) − Γ x(N)(t) − η(t)
2
Q

+ ∥ui(t)∥2
R

}
dt.

(3)

We first give equivalent conditions for the convexity of (P1).

Proposition 3.1. (i) Problem (P1) is convex in u if and only if for
any ui ∈ L2F (0, T ;Rr ), i = 1, . . . ,N,

N∑
i=1

E
∫ T

0
e−ρt

{yi(t) − Γ y(N)(t)
2
Q + ∥ui(t)∥2

R

}
dt ≥ 0,

where y(N)
=

∑N
j=1 yj/N and yi satisfies

dyi(t) = [Ayi(t) + Gy(N)(t) + Bui(t)]dt,

yi(0) = 0, i = 1, 2, . . . ,N. (4)

(ii) Problem (P1) is uniformly convex in u if and only if for any
ui ∈ L2F (0, T ;Rr ), there exists γ > 0 such that

N∑
i=1

E
∫ T

0
e−ρt

{yi(t) − Γ y(N)(t)
2
Q + ∥ui(t)∥2

R

}
dt

≥γ

N∑
i=1

E
∫ T

0
e−ρt

∥ui(t)∥2dt.

Proof. Let xi and x́i be the state processes of agent i with the
control v and v́, respectively. Take any λ1 ∈ [0, 1] and let λ2 =

1 − λ1. Then

λ1JFsoc(v) + λ2JFsoc(v́) − JFsoc(λ1v + λ2v́)

=λ1λ2

N∑
i=1

E
∫ T

0

{
∥xi(t) − x́i(t) − Γ (x(N)(t) − x́(N)(t))∥2

Q

+ ∥vi(t) − v́i(t)∥2
R

}
dt.

Denote u = v − v́, and yi = xi − x́i. Thus, yi satisfies (4). By the
definition of (uniform) convexity, the lemma follows. □

By examining the variation of JFsoc, we obtain the necessary
and sufficient conditions for the existence of centralized optimal
control of (P1). To simplify the presentation later, we denote{

Ξ
∆
= Γ TQ + QΓ − Γ TQΓ ,

η̄
∆
= Qη − Γ TQη.
Theorem 3.1. Suppose R > 0. Then (P1) has a set of optimal control
laws if and only if Problem (P1) is convex in u and the following
equation system admits a set of solutions (xi, pi, β

j
i , i, j = 1, . . . ,N):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t) =
(
Axi(t) − BR−1BTpi(t) + Gx(N)(t) + f (t)

)
dt

+ σ (t)dWi(t),

dpi(t) = −
[
(A − ρI)Tpi(t) + GTp(N)(t) + Qxi(t)

]
dt

+
[
Ξx(N)(t) + η̄(t)

]
dt +

N∑
j=1

β
j
i (t)dWj(t),

xi(0) =xi0, pi(T ) = 0, i = 1, . . . ,N,

(5)

where p(N)(t) =
1
N

∑N
i=1 pi(t), and furthermore the optimal control

is given by ǔi(t) = −R−1BTpi(t).

roof. Suppose that ǔi = −R−1BTpi, where (pi, β
j
i , i, j = 1, · · · ,N)

s a set of solutions to the second equation in (5). Denote by x̌i
he state of agent i under the control ǔi. For any ui ∈ L2F (0, T ;Rr )
and θ ∈ R (θ ̸= 0), let uθ

i = ǔi + θui. Denote by xθ
i the solution

f the following perturbed state equation

dxθ
i (t) =

[
Axθ

i (t) + B(ǔi(t) + θui(t)) + f (t)

+
G
N

N∑
i=1

xθ
i (t)

]
dt + σ (t)dWi(t),

xθ
i (0) =xi0, i = 1, 2, . . . ,N.

Let yi = (xθ
i − x̌i)/θ . It can be verified that yi satisfies (4). Then by

Itô’s formula, for any i = 1, . . . ,N ,

0 =E[⟨e−ρTpi(T ), yi(T )⟩ − ⟨pi(0), yi(0)⟩]

=E
∫ T

0
e−ρt [

⟨−
[
(A − ρI)Tpi(t) + GTp(N)(t) + Qxi(t)

]
+ Ξx(N)(t) + η̄(t), yi(t)⟩ + ⟨pi(t), (A − ρI)yi(t)

+ Gy(N)(t) + Bui(t)⟩
]
dt,

which implies

0 =

N∑
i=1

E
∫ T

0
e−ρt [

⟨−
(
GTp(N)(t) + Qxi(t)

)
+ Ξx(N)(t) + η̄(t), yi(t)⟩

+ ⟨GTp(N)(t), yi(t)⟩ + ⟨BTpi(t), ui(t)⟩
]
dt. (6)

From (3), we have

JFsoc(ǔ + θu) − JFsoc(ǔ) = 2θ I1 + θ2I2 (7)

where ǔ = (ǔ1, . . . , ǔN ), and

I1
∆
=

N∑
i=1

E
∫ T

0
e−ρt[⟨Q (

x̌i(t) − (Γ x̌(N)(t) + η)
)
,

yi(t) − Γ y(N)(t)
⟩
+ ⟨Rǔi(t), ui(t)⟩

]
dt,

2
∆
=

N∑
i=1

E
∫ T

0
e−ρt[yi(t) − Γ y(N)(t)

2
Q + ∥ui(t)∥2

R

]
dt.

Note that (suppressing the time t)
N∑
i=1

E
∫ T

0
e−ρt ⟨Q (

x̌i − (Γ x̌(N)
+ η)

)
, Γ y(N)⟩dt

=E
∫ T

0
e−ρt

⟨
Γ TQ

N∑(
x̌i − (Γ x̌(N)

+ η)
)
,
1
N

N∑
yj

⟩
dt
i=1 j=1
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(

=

N∑
j=1

E
∫ T

0
e−ρt

⟨Γ TQ
N

N∑
i=1

(
x̌i − (Γ x̌(N)

+ η)
)
, yj

⟩
dt

=

N∑
j=1

E
∫ T

0
e−ρt ⟨Γ TQ

(
(I − Γ )x̌(N)

− η
)
, yj

⟩
dt.

From (6), one can obtain that

I1 =E
N∑
i=1

∫ T

0
e−ρt

[⟨
Q

(
x̌i − (Γ x̌(N)

+ η)
)
,

yi − Γ y(N) ⟩
+⟨Rǔi + BTpi, ui⟩

]
dt

+

N∑
i=1

E
∫ T

0
e−ρt [

⟨−
(
GTp(N)(t) + Qxi(t)

)
+ Ξx(N)(t) + η̄(t) + (A − ρI)Tpi + GTp(N), yi⟩dt

=

N∑
i=1

E
∫ T

0
e−ρt ⟨Rǔi + BTpi, ui

⟩
dt. (8)

From (7), ǔ is a minimizer to Problem (P1) if and only if I2 ≥ 0
and I1 = 0. By Proposition 3.1, I2 ≥ 0 if and only if (P1) is convex.
I1 = 0 is equivalent to

ǔi = − R−1BTpi.

Thus, we have the optimality system (5). This implies that (5)
admits a solution (x̌i, p̌i, β̌

j
i , i, j = 1, . . . ,N).

On other hand, if the equation system (5) admits a solution
x̌i, p̌i, β̌

j
i , i, j = 1, . . . ,N). Let ǔi = −R−1BT p̌i. If (P1) is convex,

then ǔ is a minimizer to Problem (P1). □

It follows from (5) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(N)(t) =
[
(A + G)x(N)(t) − BR−1BTp(N)(t) + f (t)

]
dt

+
1
N

N∑
i=1

σ (t)dWi(t),

dp(N)(t) =−

[
(A + G − ρI)Tp(N)(t)

+ (I − Γ )TQ (I − Γ )x(N)(t) − η̄(t)
]
dt

+
1
N

N∑
i=1

N∑
j=1

β
j
i (t)dWj(t),

x(N)(0) =
1
N

N∑
i=1

xi0, p(N)(T ) = 0.

(9)

Let pi(t) = P(t)xi(t)+K (t)x(N)(t)+ s(t), t ≥ 0. Then by (5), (9) and
Itô’s formula (suppressing the time t),

dpi = Ṗxidt + P
[(

Axi − BR−1BT (Pxi + Kx(N)
+ s)

+ Gx(N)
+ f

)
dt + σdWi

]
+(ṡ + K̇ x(N))dt

+ K
{[

(A + G)x(N)
− BR−1BT ((P + K )x(N)

+ s) + f
]
dt +

1
N

N∑
i=1

σdWi

}
= −

[
(A − ρI)T (Pxi + Kx(N)

+ s)

+ GT ((P + K )x(N)
+ s)

+ Qxi − Ξx(N)
− η̄

]
dt +

N∑
j=1

β
j
idWj.
This implies β i
i =

1
N Kσ + Pσ , β j

i =
1
N Kσ , j ̸= i,

ρP(t) =Ṗ(t) + ATP(t) + P(t)A + Q

−P(t)BR−1BTP(t), P(T ) = 0, (10)

ρK (t) = K̇ (t) + (A + G)TK (t) + K (t)(A + G) + GTP(t)

+P(t)G − (P(t) + K (t))BR−1BT (P(t) + K (t))

+P(t)BR−1BTP(t) − Ξ , K (T ) = 0, (11)

ρs(t) = ṡ(t) + [A + G − BR−1BT (P + K )]T s(t)

+(P + K )f (t) − η̄(t), s(T ) = 0. (12)

Remark 3.1. Note that (11) is not a standard Riccati equa-
tion. Its solvability may be referred to Abou-Kandil, Freiling,
Ionescu, and Jank (2003). In particular, by Theorem 4.3 in Ma

and Yong (1999, Chapter 2), if det
{
[0, I]eAt

[
0
I

]}
> 0 with

A =

[
A −

ρ

2 I −BR−1BT

−Q −AT
+

ρ

2 I

]
, then we have

P(t) =

{
[0, I]eAt

[
0
I

]}−1{
[0, I]eAt

[
I
0

]}
.

Remark 3.2. Denote Π = P + K . Then from (10) and (11), Π

satisfies

ρΠ (t) = Π̇ (t) + (A + G)TΠ (t) + Π (t)(A + G)

− Π (t)BR−1BTΠ (t) + (I − Γ )TQ (I − Γ ).
(13)

with Π (T ) = 0. By Sun et al. (2016, Theorem 4.5), the solvability
of (10) and (11) is equivalent to the uniform convexity of two
optimal control problems. Particularly, if Q ≥ 0, then (10) and
(11) admit a unique solution, respectively.

Theorem 3.2. Assume (A1) holds, and (10)–(11) admit a solution,
respectively. Then (P1) has an optimal control

ǔi(t) = −R−1BT
[P(t)xi(t) + K (t)x(N)(t) + s(t)],

where P, K and s are determined by (10)–(12).

To prove Theorem 3.2, we first provide a lemma, which plays
a key role in the later analysis.

Lemma 3.1. If (10) and (11) admit a solution, respectively, then
Problem (P1) is uniformly convex.

Proof. By (10), (13), and direct calculations, we have
N∑
i=1

E
∫ T

0
e−ρt

(yi(t) − Γ y(N)(t)
2
Q + ∥ui(t)∥2

R

)
dt

=

N∑
i=1

E
∫ T

0
e−ρt

(
∥yi(t)∥2

Q − ∥y(N)(t)∥2
Ξ + ∥ui(t)∥2

R

)
dt

=

N∑
i=1

E
∫ T

0
e−ρt

(
∥yi(t) − y(N)(t)∥2

Q + ∥y(N)(t)∥2
Q−Ξ

+ ∥ui(t) − u(N)(t)∥2
R + ∥u(N)(t)∥2

R

)
dt

=

N∑
i=1

E
∫ T

0
e−ρt

(ui(t) − u(N)(t)

+ R−1BTP(t)(yi(t) − y(N)(t))
2
R

+
u(N)(t) + R−1BTΠ (t)y(N)(t)

2
)
dt
R
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w

ρ

a

ρ

i

L

E

≥

N∑
i=1

E
∫ T

0
e−ρt

(ui(t) + R−1BTP(t)(yi(t) − y(N)(t))

+ R−1BTΠ (t)y(N)(t)
2
R

)
dt

≥γ

N∑
i=1

E
∫ T

0
e−ρt

∥ui(t)∥2dt,

where the last line follows by Sun et al. (2016, Lemma 2.3). From
Theorem 3.1, the lemma follows. □

Proof of Theorem 3.2. Since (10) and (11) have a solution,
respectively, then by Ma and Yong (1999, Chapter 2, §4), (9)
admits a unique solution. Thus, the FBSDE (5) is decoupled and
the existence of a solution follows. From Lemma 3.1, (P1) is
uniformly convex. By Theorem 3.1, (P1) has an optimal control
given by ǔi(t) = −R−1BT

[P(t)xi(t) + K (t)x(N)(t) + s(t)], t ≥ 0,
where P, K and s are determined by (10)–(12). □

As an approximation to x(N) in (9), we obtain

dx̄
dt

=(A + G)x̄(t) − BR−1BT (Π (t)x̄(t) + s(t))

+ f (t), x̄(0) = x̄0.
(14)

Then, by Theorem 3.2, the decentralized control law for agent i
may be taken as

ûi(t) = − R−1BT
[P(t)x̂i(t) + K (t)x̄(t) + s(t)],

0 ≤ t ≤ T , i = 1, . . . ,N,
(15)

where P, K , and s are determined by (10)–(12), and x̄ and x̂i
respectively satisfy (14) and

dx̂i(t) =
[
(A − BR−1BTP(t))x̂i(t) + Gx̂(N)(t) + f (t)

−BR−1BT (K (t)x̄(t) + s(t))
]
dt + σ (t)dWi(t). (16)

Remark 3.3. Here, we firstly obtain the centralized open-loop
solution by variational analysis. By tackling the coupled FBS-
DEs combined with mean field approximations, the decentralized
control laws are designed. Note that in this case s and x̄ are fully
decoupled and no fixed-point equation is needed.

Theorem 3.3. Assume that (A1) holds, and (10)–(11) admit a solu-
tion, respectively. The set of decentralized control laws {û1, . . . , ûN}

in (15) has asymptotic social optimality, i.e.,⏐⏐⏐ 1
N
JFsoc(û) −

1
N

inf
u∈L2F (0,T ;Rnr )

JFsoc(u)
⏐⏐⏐ = O(

1
√
N
),

and the corresponding social cost is given by

JFsoc(û) =

N∑
i=1

E
{xi0 − x(N)(0)

2
P +

x(N)(0)
2

Π

+ 2sT (0)x(N)(0)
}

+ NqT + NϵT , (17)

where

qT =

∫ T

0
e−ρt [

∥σ (t)∥2
P(t) + ∥σ (t)∥2

Π (t)

− ∥BT s(t)∥
2
R−1 + 2sT (t)f (t)

]
dt, (18)

ϵT =E
∫ T

0
e−ρt

∥BTK (t)(x(N)(t) − x̄(t))∥2
R−1dt. (19)

Proof. See Appendix A. □
4. The infinite-horizon problem

Based on the analysis in Section 3, we may design the follow-
ing decentralized control laws for Problem (P):

ûi(t) = − R−1BT
[Px̂i(t) + (Π − P)x̄(t) + s(t)],

t ≥ 0, i = 1, . . . ,N,
(20)

here P and Π are maximal solutions1 to the equations

ρP =ATP + PA − PBR−1BTP + Q , (21)

Π =(A + G)TΠ + Π (A + G) − ΠBR−1BTΠ + Q − Ξ , (22)

nd s, x̄ ∈ Cρ/2([0, ∞),Rn) are determined by

s(t) =ṡ(t) + (A + G − BR−1BTΠ )T s(t) + Π f (t) − η̄(t), (23)
˙̄x(t) =(A + G)x̄(t) − BR−1BT (Π x̄(t) + s(t))

+ f (t), x̄(0) = x̄0. (24)

Here s(0) is to be determined, and the existence conditions of
P, Π, s and x̄ need to be investigated further.

4.1. Uniform stabilization of subsystems

We now list some basic assumptions for reference:
(A2) The system (A −

ρ

2 I, B) is stabilizable, and (A + G −
ρ

2 I, B)
s stabilizable. Particularly, Ā + G −

ρ

2 I is Hurwitz, where Ā ∆
=

A − BR−1BTP .
(A3) Q ≥ 0, (A−

ρ

2 I,
√
Q ) is observable, and (A+G−

ρ

2 I,
√
Q (I−Γ ))

is observable.
Assumptions (A2) and (A3) are basic in the study of the LQ op-

timal control problem. We will show that under some conditions,
(A2) is also necessary for uniform stabilization of multiagent
systems. In many cases, (A3) may be weakened to the following
assumption.
(A3′) Q ≥ 0, (A−

ρ

2 I,
√
Q ) is detectable, and (A+G−

ρ

2 I,
√
Q (I−Γ ))

is detectable.

Lemma 4.1. Under (A2)–(A3), (21) and (22) admit unique solutions
P > 0, Π > 0, respectively, and (23)–(24) admits a set of unique
solutions s, x̄ ∈ Cρ/2([0, ∞),Rn).

Proof. From (A2)–(A3) and (Anderson & Moore, 1990), (21) and
(22) admit unique solutions P > 0, Π > 0 such that A −

BR−1BTP−
ρ

2 I and A+G−BR−1BTΠ−
ρ

2 I are Hurwitz, respectively.
From an argument in Wang and Zhang (2012a, Appendix A), we
obtain s ∈ Cρ/2([0, ∞),Rn) if and only if

s(t) =

∫
∞

t
e−(A+G−BR−1BTΠ−ρI)(t−τ )(Π f (τ ) − η̄(τ ))dτ . □

emma 4.2. Let (A1)–(A3) hold. Then for Problem (P),∫
∞

0
e−ρt

∥x̂(N)(t) − x̄(t)∥2dt = O(
1
N
), (25)

where x̂(N)
=

∑N
i=1 x̂i, and x̄ satisfies (24).

Proof. See Appendix B. □

It is shown that the decentralized control laws (15) uniformly
stabilize the systems (1) .

1 For a Riccati equation (e.g., (21)), P is called a maximal solution if for any
solutions P ′ , P − P ′

≥ 0.
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Theorem 4.1. Let (A1)–(A3) hold. Then for any N,
N∑
i=1

E
∫

∞

0
e−ρt (

∥x̂i(t)∥2
+ ∥ûi(t)∥2) dt < ∞. (26)

Proof. See Appendix B. □

We now give two equivalent conditions for uniform stabiliza-
tion of multiagent systems.

Theorem 4.2. Let (A3) hold. Assume that (21)–(22) admit sym-
metric solutions. Then for Problem (P) the following statements are
equivalent:
(i) For any initial condition (x̂1(0), . . . , x̂N (0)) satisfying (A1),

N∑
i=1

E
∫

∞

0
e−ρt (

∥x̂i(t)∥2
+ ∥ûi(t)∥2) dt < ∞. (27)

(ii) Eqs. (21) and (22) admit unique maximal solutions such that
P > 0, Π > 0, and Ā + G −

ρ

2 I is Hurwitz.
iii) (A2) holds.

roof. See Appendix C. □

For G = 0, we have a simplified version of Theorem 4.2.

orollary 1. Assume that (A3) holds and G = 0. Assume that (21)–
22) admit symmetric solutions. Then the following statements are
quivalent:
i) For any (x̂1(0), . . . , x̂N (0)) satisfying (A1),
N

i=1

E
∫

∞

0
e−ρt (

∥x̂i(t)∥2
+ ∥ûi(t)∥2) dt < ∞.

(ii) Eqs. (21) and (22) admit unique maximal solutions such that
P > 0, Π > 0, respectively.
(iii) The system (A −

ρ

2 I, B) is stabilizable.

When (A3) is weakened to (A3′), we have the following equiv-
alent conditions of uniform stabilization.

Theorem 4.3. Let (A3′) hold. Assume that (21)–(22) admit solu-
tions. Then the following are equivalent:
(i) For any initials (x̂1(0), . . . , x̂N (0)) satisfying (A1),
N∑
i=1

E
∫

∞

0
e−ρt (

∥x̂i(t)∥2
+ ∥ûi(t)∥2) dt < ∞.

(ii) Eqs. (21) and (22) admit unique maximal solutions P ≥ 0, Π ≥

0, and Ā + G −
ρ

2 I is Hurwitz.
iii) (A2) holds.

roof. See Appendix C. □

For the more general case that Q are indefinite, we have the
ollowing equivalent conditions for uniform stabilization of all the
ubsystems. Assume
A3′′) both M1 and M2 have no eigenvalues on the imaginary axis,
here

1 =

[
A −

ρ

2 I BR−1BT

Q −AT
+

ρ

2 I

]
,

2 =

[
A + G −

ρ

2 I BR−1BT

Q − Ξ −(A + G)T +
ρ

2 I

]
.

heorem 4.4. Assume that (A3′′) holds, and (21)–(22) admit
olutions. Then the following are equivalent:
(i) For any (x̂1(0), . . . , x̂N (0)) satisfying (A1),
N∑
i=1

E
∫

∞

0
e−ρt (

∥x̂i(t)∥2
+ ∥ûi(t)∥2) dt < ∞.

(ii) Eqs. (21) and (22) admit unique ρ-stabilizing solutions2 (which
re also the maximal solutions), and Ā + G −

ρ

2 I is Hurwitz.
(iii) (A2) holds.

Remark 4.1. M1 and M2 are Hamiltonian matrices. The Hamilto-
nian matrix plays a significant role in studying general algebraic
Riccati equations. See more details of the property of Hamiltonian
matrices in Abou-Kandil et al. (2003) and Molinari (1977).

Remark 4.2. For the case Q = 0 and G = 0, the Hamiltonian
atrices reduce to

1 = M2 =

[
A −

ρ

2 I BR−1BT

0 −AT
+

ρ

2 I

]
.

Then it follows from Theorem 4.4 that if A −
ρ

2 I have no eigen-
values on the imaginary axis, the decentralized controls (15)
uniformly stabilize the systems (1) if and only if (A −

ρ

2 I, B) is
stabilizable. Since Q = 0 and A −

ρ

2 I is not Hurwitz necessarily,
the system (A−

ρ

2 I,
√
Q ) is not detectable, which implies that the

assumptions of Theorem 4.3 in Huang et al. (2012) do not hold.

To show Theorem 4.4, we need two lemmas. The first lemma
is copied from Molinari (1977, Theorem 6).

Lemma 4.3. Eqs. (21) and (22) admit unique ρ-stabilizing solutions
(which are also the maximal solutions) if and only if (A2) and (A3′′)
hold.

Lemma 4.4. Let (A1) hold. Assume that (21) and (22) admit
ρ-stabilizing solutions, respectively, and Ā+G−

ρ

2 I is Hurwitz. Then

N∑
i=1

E
∫

∞

0
e−ρt (

∥x̂i(t)∥2
+ ∥ûi(t)∥2) dt < ∞.

roof. From the definition of ρ-stabilizing solutions, A−BR−1BTP
ρ

2 I and A + G − BR−1BTΠ −
ρ

2 I are Hurwitz. By the argument
in the proof of Theorem 4.1, the lemma follows. □

Proof of Theorem 4.4. By using Lemmas 4.3 and 4.4 together
with a similar argument in the proof of Theorem 4.1, the theorem
follows. □

Example 1. Consider a scalar system with A = a, B = b, G = g ,
= q, Γ = γ , R = r > 0. Then

M1 =

[
a − ρ/2 b2/r

q −a + ρ/2

]
,

M2 =

[
a + g − ρ/2 b2/r
q(1 − γ )2 −(a + g − ρ/2)

]
.

By direct computations, neither M1 nor M2 has eigenvalues in the
imaginary axis if and only if

(a −
ρ

2
)2 +

b2

r
q > 0, (28)

a + g −
ρ

2
)2 +

b2

r
(1 − γ )2q > 0. (29)

2 For a Riccati equation (21), P is called a ρ-stabilizing solution if P satisfies
(21) and all the eigenvalues of A − BR−1BT P −

ρ I are in left half-plane.
2
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Note that if q > 0 (or a − ρ/2 < 0, q = 0), i.e., (a − ρ/2,
√
q)

is observable (detectable), then (28) holds, and if (1 − γ )2q > 0
(a+g−ρ/2 < 0, q = 0), i.e., (a+g−ρ/2,

√
q(1−γ )) is observable

(detectable), then (29) holds.
For this model, the Riccati equation (21) is written as

b2

r
p2 − (2a − ρ)p − q = 0. (30)

Let ∆ = 4[(a − ρ/2)2 + b2q/r]. If (28) holds then ∆ > 0, which
implies (30) admits two solutions. If q > 0 then (30) has a unique
positive solution such that a − b2p/r − ρ/2 = −

√
∆/2 < 0. If

= 0 and a − ρ/2 < 0 then (30) has a unique non-negative
olution p = 0 such that a − b2p/r − ρ/2 = a − ρ/2 < 0.
Assume that (28) and (29) hold. By Theorem 4.4, the system is

niformly stable if and only if (a−ρ/2, b) is stabilizable (i.e., b ̸= 0
r a − ρ/2 < 0), and a − b2p/r − ρ/2 + g < 0. Note that
−b2p/r−ρ/2 < 0. When g ≤ 0, we have a−b2p/r−ρ/2+g < 0.

Example 2. We further consider the model in Example 1 for
the case that a + g = ρ/2 and γ = 1 (i.e., (29) does not hold).
n this case, the Riccati equation (22) admits a unique solution

= 0. (23) becomes ρs(t) = ṡ(t) +
ρ

2 s(t) and has a unique
solution s(t) ≡ 0 in Cρ/2([0, ∞),R). Thus, x̄ satisfies

dx̄
dt

=
ρ

2
x̄(t) + f (t). (31)

Assume that f is a constant. Then (31) does not admit a solution
in Cρ/2([0, ∞),R) unless x̄(0) = −2f /ρ.

4.2. Asymptotic social optimality

Now we are in a position to state the asymptotic optimality of
the decentralized control.

Theorem 4.5. Let (A1)–(A3) hold. For Problem (P), the set of
decentralized control laws {û1, . . . , ûN} given by (20) has asymptotic
social optimality, i.e.,⏐⏐⏐ 1
N
Jsoc(û) −

1
N

inf
u∈Uc

Jsoc(u)
⏐⏐⏐ = O(1/

√
N).

Proof. We first prove that for u ∈ Uc , Jsoc(u) < NC1 implies that
N∑
i=1

E
∫

∞

0
e−ρt (∥xi(t)∥2

+ ∥ui(t)∥2)dt < NC2, (32)

for all i = 1, . . . ,N . From Jsoc(u) < NC1, we have
∑N

i=1 E
∫

∞

0 e−ρt

∥ui(t)∥2dt < NC and
N∑
i=1

E
∫

∞

0
e−ρt

xi(t) − Γ x(N)(t)
2
Q dt < NC, (33)

which further implies that

E
∫

∞

0
e−ρt

(I − Γ )x(N)(t)
2
Q

≤
1
N

N∑
i=1

E
∫

∞

0
e−ρt

xi(t) − Γ x(N)(t)
2
Q dt < C .

(34)

By (1) we have

dx(N)(t) =
[
(A + G)x(N)(t) + Bu(N)(t) + f (t)

]
dt

+
1
N

N∑
σ (t)dWi(t),
i=1
which leads to for any r ∈ [0, 1],

x(N)(t) = e(A+G)rx(N)(t − r)

+

∫ t

t−r
e(A+G)(t−τ )

[Bu(N)(τ ) + f (τ )]dτ

+
1
N

N∑
i=1

∫ t

t−r
e(A+G)(t−τ )σ (τ )dWi(τ ).

(35)

y Jsoc(u) < C1 and basic SDE estimates, we can find a constant C
uch that∫

∞

r
e−ρt

 ∫ t

t−r
e(A+G)(t−τ )Bu(N)(τ )dτ

2
dt ≤ C .

rom (34) and (35) we obtain

E
∫

∞

r
e−ρt

[x(N)(t − r)]T e(A+G)T r (I − Γ )TQ (I − Γ )

· e(A+G)rx(N)(t − r)dt ≤ C,

hich implies that for any r ∈ [0, 1],

E
∫

∞

0
e−ρt

[x(N)(τ )]T e(A+G)T r (I − Γ )TQ (I − Γ )

· e(A+G)rx(N)(τ )dτ ≤ C .

y taking integration with respect to r ∈ [0, 1], we obtain

E
∫

∞

0
e−ρt

[x(N)(τ )]T
[ ∫ 1

0
e(A+G)T r (I − Γ )TQ (I − Γ )

· e(A+G)rdr
]
x(N)(τ )dτ ≤ C .

This together with (A3) leads to∫
∞

0
e−ρt

∥x(N)(t)∥2dt < C, (36)

hich with (33) further gives
N∑
i=1

E
∫

∞

0
e−ρt

∥xi(t)∥2
Q dt < NC . (37)

By (1), we have

xi(t) = eArxi(t − r)

+

∫ t

t−r
eA(t−τ )

[Bui(τ ) + f (τ ) + Gx(N)(τ )]dτ

+

∫ t

t−r
eA(t−τ )σ (τ )dWi(τ ).

(38)

t follows from (36) that

E
∫

∞

r
e−ρt

 ∫ t

t−r
eA(t−τ )Gx(N)(τ )dτ

2
dt

E
∫

∞

0
e−ρτ

∥Gx(N)(τ )∥
2
∫ r

0

e(A−
ρ
2 I)v

2
dvdτ ≤ C .

From (37) and (38), we obtain that
N∑
i=1

E
∫

∞

r
e−ρtxTi (t − r)eA

T rQeArxi(t − r)dt ≤ NC .

his together with (A3) implies that
N

i=1

E
∫

∞

0
e−ρt

∥xi(t)∥2dt < NC,

hich gives (32). From this with Theorem 4.1,
N

E
∫

∞

e−ρt(
∥x̃i(t)∥2

+ ∥ũi(t)∥2)dt < NC .
i=1 0
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By a similar argument to the proof of Theorem 3.3 combined with
Lemma 4.2, the conclusion follows. □

If (A3) is replaced by (A3′), the decentralized control (20) still
has asymptotic social optimality.

Corollary 2. Assume that (A1)–(A2), (A3′) hold. The decentralized
control (20) is asymptotically social optimal.

Proof. Without loss of generality, we simply assume A + G =

diag{A1,A2}, where A1 − (ρ/2)I is Hurwitz, and −(A2 − (ρ/2)I)
is Hurwitz (if necessary, we may apply a nonsingular linear trans-
formation as in the proof of Theorem 4.3). Write x(N)

= [zT1 , zT2 ]

and Q 1/2(I − Γ ) = [S1, S2] such that
(I − Γ )x(N)(t)

2
Q =

∥S1z1(t) + S2z2(t)∥2, and (A2 − (ρ/2)I, S2) is observable. By the
proof of Theorem 4.1 or (Huang, 2010), E

∫
∞

0 e−ρt
∥u(N)(t)∥2dt <

∞ implies E
∫

∞

0 e−ρt
∥z1(t)∥2dt < ∞, which together with (34)

gives E
∫

∞

0 e−ρt
∥S2z2(t)∥2dt < ∞. This and the observability

of (A2 − (ρ/2)I, S2) leads to E
∫

∞

0 e−ρt
∥z2(t)∥2dt < ∞. Thus,

E
∫

∞

0 e−ρt
∥x(N)(t)∥2dt < ∞. The other parts of the proof are

similar to that of Theorem 4.5. □

For the case that Q are indefinite, we have the following result
of asymptotic optimality.

Theorem 4.6. Let (A1)–(A2), (A3′′) hold. Assume (21)–(22) admit
negative definite solutions P− < 0 and Π− < 0, respectively. Then,
the set of decentralized control in (20) is asymptotically socially
optimal. Furthermore, if {xi0} have the same variance, then the
asymptotic average social optimum is given by

lim
N→∞

1
N
Jsoc(û) = E

[
∥xi0 − x̄0∥2

P + ∥x̄0∥2
Π + 2sT (0)x̄0

]
+ q∞,

here

∞ =

∫
∞

0
e−ρt[

∥σ (t)∥2
P + ∥σ (t)∥2

Π

− ∥BT s(t)∥2
R−1 + 2sT (t)f (t)

]
dt. (39)

Proof. From the above assumptions and Theorem 4.4, the Riccati
equation (21) admits a ρ-stabilizing solution P and a negative
definite solution P−; (22) has a ρ-stabilizing solution Π and a
egative definite solution Π−. By a similar argument in the proof
f Lemma 3.1, we obtain for any u ∈ Uc ,

Jsoc(u)
N∑
i=1

E
∫

∞

0
e−ρt

(
∥xi − x(N)

∥
2
Q + ∥x(N)

∥
2
Q−Ξ + ∥η∥

2
Q

− 2ηTQ (I − Γ )xi + ∥ui − u(N)
∥
2
R + ∥u(N)

∥
2
R

)
dt

=

N∑
i=1

E
[

∥xi0 − x(N)(0)∥
2
P− + ∥x(N)(0)∥

2
Π−

+ 2sT (0)x(N)(0)
]

− lim
T→∞

N∑
i=1

e−ρTE
[
∥x(N)(T )∥

2
Π−

+ ∥xi(T ) − x(N)(T )∥
2
P− + 2sT (T )x(N)(T )

]
+

N∑
i=1

E
∫

∞

0
e−ρt

( u(N)
+ R−1BTΠ−x(N)

2
R

+
ui − u(N)

+ R−1BTP−(xi − x(N))
2
R

)
dt + q∞.

By Willems (1971, Theorem 8), the centralized optimal control

exists and the optimal state is ρ-stable. Thus, we only need to
consider the following control set

U ′

c =

{
(u1, . . . , uN )|ui(t) is adapted to Ft ,

E
∫

∞

0
e−ρt

∥xi(t)∥2dt < ∞, ∀i
}

.

For any u ∈ U ′
c satisfying Jsoc(u) ≤ NC , we have

Jsoc(u)

=

N∑
i=1

E
[
∥xi0 − x(N)(0)∥2

P + ∥x(N)(0)∥2
Π + 2sT (0)x̄0

]
+

N∑
i=1

E
∫

∞

0
e−ρt

( ui − u(N)
+ R−1BTP(xi − x(N))

2
R

+
u(N)

+ R−1BTΠx(N)
2
R

)
dt + q∞ ≤ NC . (40)

Denote v(N)
= u(N)

+ R−1BTΠx(N). From (1),

dx(N)(t) =(A + G − BR−1BTΠ )x(N)(t)dt

+ Bv(N)(t)dt +
1
N

N∑
i=1

σ (t)dWi(t).

By Huang (2010), there exist C1, C2 > 0 such that

E
∫

∞

0
e−ρt

∥x(N)
∥
2dt ≤ C1E

∫
∞

0
e−ρt

∥v(N)
∥
2
+ C2.

This together with (40) gives
N∑
i=1

E
∫

∞

0
e−ρt (∥x(N)

∥
2
+ ∥u(N)

∥
2)dt

=NE
∫

∞

0
e−ρt (∥x(N)

∥
2
+ ∥v(N)

− R−1BTΠx(N)
∥
2)dt

≤NC3E
∫

∞

0
e−ρt

∥v(N)
∥
2
+ NC4 ≤ NC . (41)

imilarly, we have
N

i=1

E
∫

∞

0
e−ρt (∥xi − x(N)

∥
2
+ ∥ui − u(N)

∥
2)dt ≤ NC .

rom this and (41),
N

i=1

E
∫

∞

0
e−ρt (∥xi∥2

+ ∥ui∥
2)dt ≤ NC .

he remainder of the proof can follow by that of Theorem 3.3.
or the case that {xi0} have the same variance, from (17), the
symptotic average social optimum (limN→∞

1
N Jsoc(û)) is given by

E
[
∥xi0 − x̄0∥2

P + ∥x̄0∥2
Π + 2sT (0)x̄0

]
+ q∞. □

emark 4.3. The work Huang et al. (2012) investigated mean
ield LQ problem (P) with Q ≥ 0. To obtain asymptotic social op-
imality, they need Q > 0 and I−Γ is nonsingular. In Corollary 2,
e have loosed the assumption to (A3′), i.e., (A − (ρ/2)I,

√
Q )

nd (A − (ρ/2)I,
√
Q (I − Γ )) are detectable. In Theorem 4.6, we

urther give the condition for the case of indefinite Q . Particularly,
or the scalar case, the condition is equivalent to (28)–(29). It can
e verified that the assumption Q > 0 and I − Γ is nonsingular

implies (28)–(29), but the converse is not true.

4.3. Comparison to previous solutions

In this section, we compare the proposed decentralized con-
trol laws with the feedback decentralized strategies in previous
works.
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We first introduce a definition from Basar and Olsder (1982).

Definition 4.1. For a control problem with an admissible control
set U , a control law u ∈ U is said to be a representation of another
control u∗

∈ U if
(i) they both generate the same unique state trajectory, and
(ii) they both have the same open-loop value on this trajectory.

For Problem (P), let f = 0, and G = 0. In Huang et al. (2012,
Theorem 4.3), the decentralized control laws are given by

ŭi(t) = −R−1BT (Pxi(t) + s̄(t)), i = 1, . . . ,N, (42)

where P is the stabilizing solution of (21), and s̄ = K̄ x† + φ. Here
K̄ satisfies

ρK̄ = K̄ Ā + ĀT K̄ − K̄BR−1BT K̄ T
− Ξ ,

and x†, φ ∈ Cρ/2([0, ∞),Rn) are given by

dx̄†

dt
= Āx̄†(t) − BR−1BT (K̄ x̄†(t) + φ(t)), x̄†(0) = x̄0,

dφ
dt

= − [A − BR−1BT (P + K̄ ) − ρI]φ(t) + η̄(t),

in which Ā = A − BR−1BTP and φ(0) is to be determined by
φ ∈ Cρ/2([0, ∞),Rn). By comparing this with (22)–(24), one
can obtain that K̄ = Π − P , x̄ = x̄† and φ = s. From the
above discussion, we have the equivalence of the two sets of
decentralized control laws.

Proposition 4.1. The set of decentralized control laws {û1, . . . , ûN}

in (20) is a representation of {ŭ1, . . . , ŭN} given by (42).

Remark 4.4. The work Huang et al. (2012) studied the problem
(P) with Q ≥ 0 by the fixed-point approach. In Theorem 4.3,
they have shown that the fixed-point equation admits a unique
solution, when (A − (ρ/2)I,

√
Q ) is detectable and Ξ = Γ TQ +

Γ − Γ TQΓ ≤ 0. In fact, the above assumption is merely
sufficient condition to ensure (A3′) (A − (ρ/2)I,

√
Q − Ξ ) is

detectable.

Remark 4.5. The work Huang and Zhou (2020) investigated
asymptotic solvability of mean field LQ games by the re-scaling
method. They considered (1)–(2) with Q ≥ 0 and derived a low-
imensional ordinary differential equation system by dynamic
rogramming. Actually, the method proposed in this paper can
e viewed as a type of direct approach. Different from Huang and
hou (2020), we tackle directly high-dimensional FBSDEs along
he line of maximum principle.

. Numerical examples

Now, two numerical examples are given to illustrate the effec-
iveness of the proposed decentralized control.

We first consider a scalar system with 30 agents in Problem
P). Take A = 0.8, B = R = 1,Q = −0.1,G = −0.2, f (t) =

, σ (t) = 0.2, ρ = 0.6, Γ = 0.2, η = 5 in (1)–(2). The initial
tates of 50 agents are taken independently from a normal distri-
ution N(5, 0.3). Note that B ̸= 0, and Ā + G −

ρ

2 I = −0.5873 <

. Then (A1)–(A2) hold. Since M1 =

[
0.5 1

−0.1 −0.5

]
,M2 =[

0.3 1
−0.064 −0.3

]
have no eigenvalues on the imaginary axis,

(A3′′) also holds. Under the control law (20), the trajectories of
x̄ and x̂(N) in Problem (P) are shown in Fig. 1. It can be seen that
x̄ and x̂(N) coincide well, which illustrate the consistency of mean
field approximations.
Fig. 1. Curves of x̄ and x̂(N) .

Fig. 2. Curves of ϵ with resect to N .

Denote ϵ =

⏐⏐⏐ 1
N Jsoc(û) −

1
N infu∈Uc Jsoc(u)

⏐⏐⏐. By Theorems 3.3 and

.6, we obtain ϵ =
∫

∞

0 e−ρt
∥BTK (x(N)(t) − x̄(t))∥2

R−1dt . The cost
ap ϵ is demonstrated in Fig. 2 where the agent number N grows
rom 1 to 200.

Finally, we consider the 2-dimensional case of Problem (P).

ake parameters as follows: A =

[
0.1 0
−1 0.2

]
, B =

[
1
1

]
, G =[

−0.5 0
0 −0.3

]
, Q =

[
1 0
0 1

]
, Γ =

[
1 0
1 1

]
, R =

[
1 0
0 1

]
,

η =

[
0
0.5

]
, f = [1 1]T and σ = [0.5 0.5]T . Denote x̂i(t) =

[x̂1i (t) x̂2i (t)]
T . Both of x̂1i (0) and x̂2i (0) are taken independently

from a normal distribution N(5, 0.5). Under the control laws (20),
the trajectories of x̂1i and x̂2i , i = 1, . . . ,N are shown in Figs. 3
and 4, respectively. The curves of x̂1i , i = 1, . . . , 30 soon converge
to 0 with some fluctuation. The curves of x̂2i , i = 1, . . . , 30 first
decrease and then grow up before the time 40. After a period of
time, they converge to a constant, which verify the ρ-stability of
agents.

6. Concluding remarks

In this paper, we have considered uniform stabilization and
social optimality for mean field LQ multiagent systems. For finite-
and infinite-horizon problems, we design the decentralized con-
trol laws by decoupling FBSDEs, respectively, which are further
shown to be asymptotically optimal. Some equivalent conditions
are further given for uniform stabilization of the systems in
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Fig. 3. Curves of x̂1i , i = 1, . . . , 30.

Fig. 4. Curves of x̂2i , i = 1, . . . , 30.

different cases. Finally, we compare such decentralized control
laws with the asymptotic optimal strategies in previous works.

An interesting generalization is to consider mean field LQ
control systems with heterogeneous coefficients by the direct
approach (He et al., 2015). Also, the variational analysis may be
applied to construct decentralized control laws for the nonlinear
social control model.

Appendix A. Proof of Theorem 3.3

To prove Theorem 3.3, we need a lemma.

Lemma A.1. Let (A1) hold. Assume that (10) and (11) admit a
solution, respectively. Under the control (15), we have

max
0≤t≤T

E∥x̂(N)(t) − x̄(t)∥2
= O(1/N). (A.1)

Proof. It follows by (16) that

dx̂(N)(t) =
[
(Ā(t) + G)x̂(N)(t) − BR−1BT (K (t)x̄(t)

+ s(t)) + f (t)
]
dt +

1
N

N∑
σ (t)dWi(t).
i=1
where Ā(t) = A − BR−1BTP(t). From (14), we have

x̂(N)(t) − x̄(t) = Φ(t)[x̂(N)(0) − x̄(0)]

+
1
N

N∑
i=1

∫ t

0
Φ(t, τ )σ (τ )dWi(τ ),

(A.2)

here Φ satisfies d
dt Φ(t, τ ) = (Ā(t) + G)Φ(t, τ ), Φ(τ , τ ) = I . By

A1), one can obtain

E
x̂(N)(t) − x̄(t)

2
≤2

Φ(t, 0)
2

{
E
x̂(N)(0) − x̄0

2

+
2
N

∫ t

0

Φ(t, τ )σ (τ )
2dτ

}
≤

2
N

Φ(t, 0)
2 max

1≤i≤N
E∥x̂i0∥2

+
2
N

∫ T

0

Φ(t, τ )
2σ (τ )

2dτ ,

(A.3)

hich completes the proof. □

roof of Theorem 3.3. Note that infu∈L2F (0,T ;Rnr ) J
F
soc(u) ≤ JFsoc(û).

To obtain

1
N
JFsoc(û) ≤

1
N

inf
u∈L2F (0,T ;Rnr )

JFsoc(u) + O(
1

√
N
),

we only need to prove for any u ∈ U ′ ∆
= {u ∈ L2F (0, T ;Rnr ) :

F
soc(u) ≤ JFsoc(û)}, the following holds:

1
N
JFsoc(û) ≤

1
N
JFsoc(u) + O(

1
√
N
).

e now show that for u ∈ U ′,
∑N

i=1 E
∫ T
0 e−ρt (∥xi(t)∥2

+∥ui(t)∥2)
dt < NC2. By Lemma 3.1, (P1) is uniformly convex which gives
there exists δ0 > 0 such that

δ0

N∑
i=1

E
∫ T

0
e−ρt

∥ui(t)∥2dt − C ≤ JFsoc(u).

Since JFsoc(û) < NC1, we have JFsoc(u) < NC1, which implies∑N
i=1 E

∫ T
0 e−ρt

∥ui(t)∥2dt < NC . This leads to

E
∫ T

0
e−ρt

∥u(N)
∥
2dt ≤

1
N

N∑
i=1

E
∫ T

0
e−ρt

∥ui∥
2dt < C,

here u(N)
=

1
N

∑N
i=1 ui. By (1),

dx(N)(t) =
[
(A + G)x(N)(t) + Bu(N)(t) + f (t)

]
dt

+
1
N

N∑
i=1

σ (t)dWi(t),

hich implies max0≤t≤T E∥x(N)(t)∥2
≤ C . Note that

xi(t) =eAtxi0 +

∫ t

0
eA(t−τ )σ (τ )dWi(τ )

+

∫ t

eA(t−τ )
[Gx(N)(τ ) + Bui(τ ) + f (τ )]dτ .
0
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We have
N∑
i=1

E
∫ T

0
e−ρt

∥xi(t)∥2dt

≤ C
( N∑

i=1

E∥xi0∥2
+ N max

0≤t≤T
E∥x(N)(t)∥2

+

N∑
i=1

E
∫ T

0
e−ρt

∥ui(t)∥2dt + NC1

)
< NC2.

(A.4)

By (14) and (16), we obtain that

E
∫ T

0
e−ρt(

∥x̂i(t)∥2
+ ∥ûi(t)∥2

+ ∥x̄(t)∥2)dt < C . (A.5)

Let x̃i = xi − x̂i, ũi = ui − ûi and x̃(N)
=

1
N

∑N
i=1 x̃i. Then by (1)

nd (16),

x̃i(t) = (Ax̃i(t) + Gx̃(N)(t) + Bũi(t))dt, x̃i(0) = 0. (A.6)

From (3), JFsoc(u) =
∑N

i=1(J
F
i (û) + J̃Fi (ũ) + Ii), where

J̃Fi (ũ)
∆
= E

∫ T

0
e−ρt[

∥x̃i(t) − Γ x̃(N)(t)∥2
Q + ∥ũi(t)∥2

R

]
dt,

Ii = 2E
∫ T

0
e−ρt

[(
x̂i(t) − Γ x̂(N)(t) − η(t)

)TQ
×

(
x̃i(t) − Γ x̃(N)(t)

)
+ ûT

i (t)Rũi(t)
]
dt.

By Lemma 3.1 and Proposition 3.1, J̃Fi (ũ) ≥ 0. We only need to
prove 1

N

∑N
i=1 Ii = O( 1

√
N
). By direct computations, one can obtain

N∑
i=1

Ii =

N∑
i=1

2E
∫ T

0
e−ρt

{
x̃Ti

[
Q (x̂i − Γ x̄ − η)

− Γ TQ ((I − Γ )x̄ − η)
]

+

N∑
i=1

ûT
i Rũi

}
dt

+

N∑
i=1

2E
∫ T

0
e−ρt (x̂(N)

− x̄)TΞ x̃idt.

(A.7)

By (10)–(12), (A.6) and Itô’s formula,

0 = E
∫ T

0

N∑
i=1

e−ρt
{

−x̃Ti
[
Q x̂i − Q (Γ x̄ + η)

− Γ TQ ((I − Γ )x̄ − η)
]

−ûT
i Rũi

}
dt

+ NE
∫ T

0
e−ρt (x̂(N)

− x̄)T (GTP + PG)x̃(N)dt.

From this and (A.7), we obtain

1
N

N∑
i=1

Ii =2E
∫ T

0
e−ρt (x̂(N)(t) − x̄(t))T

× (Ξ + GTP + PG)x̃(N)(t)dt.

By Lemma A.1, (A.4) and (A.5), we obtain⏐⏐⏐ 1
N

N∑
i=1

Ii

⏐⏐⏐2 ≤CE
∫ T

0
e−ρt

∥x̂(N)(t) − x̄(t)∥2dt

× E
∫ T

0
e−ρt

∥x̃(N)(t)∥2dt,

which implies |
1 ∑N I | = O(1/

√
N).
N i=1 i
Moreover, by (10), (13) and direct calculations,

JFsoc(û)

=

N∑
i=1

E
∫ T

0
e−ρt

(x̂i − Γ x̂(N)
− η

2
Q + ∥ûi∥

2
R

)
dt

=

N∑
i=1

E
∫ T

0
e−ρt

(
∥x̂i∥

2
Q + ∥x̂(N)

∥
2
Ξ + ∥η∥

2
Q

− 2ηTQ (I − Γ )x̂i + ∥ûi∥
2
R

)
dt

=

N∑
i=1

E
∫ T

0
e−ρt

(
∥x̂i − x̂(N)

∥
2
Q + ∥x̂(N)

∥
2
Q−Ξ + ∥η∥

2
Q

− 2ηTQ (I − Γ )x̂i + ∥ûi − û(N)
∥
2
R + ∥û(N)

∥
2
R

)
dt

=

N∑
i=1

E
[
∥xi0 − x(N)(0)∥

2
P + ∥x(N)(0)∥

2
Π + 2sT (0)x(N)(0)

]
+

N∑
i=1

E
∫ T

0
e−ρt

( ûi − û(N)
+ R−1BTP(x̂i − x̂(N))

2
R

+
û(N)

+ R−1BTΠ x̂(N)
2
R

)
dt + qT

N∑
i=1

E
[

∥xi0 − x(N)(0)∥
2
P + ∥x(N)(0)∥

2
Π

+ 2sT (0)x(N)(0)
]

+NqT + NϵT ,

here qT and ϵT are given by (18)–(19). □

ppendix B. Proofs of Lemma 4.2 and Theorem 4.1

roof of Lemma 4.2. From (A.2), we have

E
∫

∞

0
e−ρt

∥x̂(N)(t) − x̄(t)∥2dt

≤ 2E
∫

∞

0

e(Ā+G−
ρ
2 I)t

2 x̂(N)(0) − x̄(0)
2dt

+ 2E
∫

∞

0
e−ρt 1

N

∫ t

0
e(Ā+G)(t−τ )σdWi(τ )

2

dt

≤
2
N

∫
∞

0

e(Ā+G−
ρ
2 I)t

2
E
 max

1≤i≤N
x̂i(0)

2dt

+
C
N
E

∫
∞

0
e−ρτ

∥σ∥
2
∫

∞

τ

e(Ā+Ḡ−
ρ
2 I)(t−τ )

2dtdτ

≤ O(1/N). □

roof of Theorem 4.1. By (A1)–(A3), Lemmas 4.1 and 4.2, we
btain that x̄ ∈ Cρ/2([0, ∞),Rn) and∫

∞

0
e−ρt

(x̂(N)(t) − x̄(t)
2

)
dt = O(

1
N
),

which further gives that E
∫

∞

0 e−ρt
∥x̂(N)(t)∥2dt < ∞. Denote

∆
= −BR−1BT ((Π − P)x̄ + s) + Gx(N)

+ f . Then

ˆi(t) = eĀt x̂i0 +

∫ t

eĀ(t−τ )g(τ )dτ +

∫ t

eĀ(t−τ )σdWi(τ ). (B.1)

0 0
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Note that Ā −
ρ

2 I is Hurwitz. By Schwarz’s inequality,

E
∫

∞

0
e−ρt

∥x̂i(t)∥2dt

≤3E
∫

∞

0

e(Ā−
ρ
2 I)t

2
∥x̂i0∥2dt

+ 3E
∫

∞

0
e−ρt t

∫ t

0

eĀ(t−τ )g(τ )
2

dτdt

+ 3E
∫

∞

0
e−ρt

∫ t

0
tr[eĀ

T (t−τ )σ T (τ )σ (τ )eĀ(t−τ )
]dτdt

≤C + 3E
∫

∞

0
e−ρτ

∥g(τ )∥2
∫

∞

τ

t
e(Ā−

ρ
2 I)(t−τ )

2dtdτ

+ 3CE
∫

∞

0
e−ρτ

∥σ (τ )∥2
∫

∞

τ

e(Ā−
ρ
2 I)(t−τ )

2dtdτ

≤C1

This with (20) completes the proof. □

Appendix C. Proofs of Theorems 4.2 and 4.3

Proof of Theorem 4.2. (i)⇒ (ii). By (16),

dE[x̂i]
dt

= ĀE[x̂i(t)] − BR−1BT ((Π − P)x̄(t) + s(t))

+ GE[x̂(N)(t)] + f (t), E[x̂i(0)] = x̄0.
(C.1)

It follows from (A1) that E[x̂i(t)] = E[x̂j(t)] = E[x̂(N)(t)], j ̸= i.

By comparing (24) and (C.1), we obtain E[x̂i(t)] = x̄(t). Note
∥x̄(t)∥2

=
Ex̂i(t)2

≤ E∥x̂i(t)∥2. It follows from (27) that∫
∞

0
e−ρt

∥x̄(t)∥2dt < ∞. (C.2)

By (24), we have

x̄(t) =e(A+G−BR−1BTΠ )t
[
x̄0

+

∫ t

0
e−(A+G−BR−1BTΠ )τh(τ )dτ

]
,

where h = −BR−1BT s + f . By the arbitrariness of x̄0 with (C.2)
we obtain that A + G − BR−1BTΠ −

ρ

2 I is Hurwitz. That is,
(A+G−

ρ

2 I, B) is stabilizable. By Anderson and Moore (1990), (22)
admits a unique solution such that Π > 0. Note that E[x(N)(t)]2 ≤
1
N

∑N
i=1 E[x̂2i (t)]. Then from (27) we have

E
∫

∞

0
e−ρt

x̂(N)(t)
2dt < ∞. (C.3)

This leads to E
∫

∞

0 e−ρt
∥g(t)∥2dt < ∞, where g=−BR−1BT ((Π −

P)x̄ + s) + Gx̂(N)
+ f . By (B.1), we obtain

E∥x̂i(t)∥2
= E

eĀt (xi0 +

∫ t

0
e−Āτ g(τ )dτ

)2

+ E
∫ t

0
tr

[
σ T (τ )e(Ā

T
+Ā)(t−τ )σ (τ )

]
dτ .

By (27) and the arbitrariness of xi0 we obtain that Ā −
ρ

2 I is
Hurwitz, i.e., (A −

ρ

2 I, B) is stabilizable. By Anderson and Moore
1990), (21) admits a unique solution such that P > 0.

From (C.2) and (C.3),∫
∞

e−ρt
x̂(N)(t) − x̄(t)

2dt < ∞. (C.4)

0

On the other hand, (A.2) gives

E
x̂(N)(t) − x̄(t)

2
= E

e(Ā+G)t
[x̂(N)(0) − x̄0]

2

+
1
N

∫ t

0
tr

[
σ T (τ )e(Ā

T
+GT+Ā+G)(t−τ )σ (τ )

]
dτ .

y (C.4) and the arbitrariness of xi0, i = 1, . . . ,N , we obtain that
Ā + G −

ρ

2 I is Hurwitz.

(ii)⇒(iii). Let V (t) = e−ρt ȳT (t)Π ȳ(t), where ȳ satisfies
˙̄(t) = (A + G)ȳ(t) + Bū(t), ȳ(0) = ȳ0.

enote V by V ∗ when ū = ū∗
= −R−1BTΠ ȳ. By (22),

dV ∗

dt
=ȳT (t)

[
−ρΠ + (A + G − BR−1BTΠ )TΠ

+ Π (A + G − BR−1BTΠ )
]
ȳ(t)

=ȳT (t)
[
−(Q − Ξ ) − ΠBR−1BTΠ

]
ȳ(t) ≤ 0.

ote that V ∗
≥ 0. Then limt→∞ V ∗(t) exists, which implies

lim
t0→∞

[V ∗(t0) − V ∗(t0 + T )] = 0. (C.5)

Rewrite Π (t) in (13) by ΠT (t). Then we have ΠT+t0 (t0) =

T (0). By (13),∫ T+t0

t0

e−ρt (∥ȳ(t)∥2
Q−Ξ + ∥ū(t)∥2

R)dt

e−ρt0 ȳT (t0)ΠT+t0 (t0)ȳ(t0)

+

∫ T

0
e−ρt

ū(t) + R−1BTΠT+t0 (t0)ȳ(t)
2
Rdt

≥e−ρt0
ȳ(t0)2

ΠT+t0 (t0)
= e−ρt0

ȳ(t0)2
ΠT (0)

.

This with (C.5) implies

lim
t0→∞

e−ρt0
ȳ(t0)2

ΠT (0)

≤ lim
t0→∞

∫ T+t0

t0

e−ρt (∥ȳ(t)∥2
Q−Ξ + ∥ū∗(t)∥2

R)dt

= lim
t0→∞

[V ∗(t0) − V ∗(t0 + T )] = 0.

By (A3), one can get that there exists T > 0 such that ΠT (0) > 0
(see e.g. Zhang et al. (2019) and Zhang, Zhang, and Chen (2008)).
Thus, we have limt→∞ e−ρt

ȳ(t)2
= 0, which implies that (A +

−
ρ

2 I, B) is stabilizable. Similarly, we can show (A −
ρ

2 I, B) is

stabilizable.
(iii)⇒(i). This part has been proved in Theorem 4.1. □

Proof of Theorem 4.3. (iii)⇒(i). From Anderson and Moore
(1990), (21) and (22) admit unique solutions P ≥ 0, Π ≥ 0
uch that A − BR−1BTP −

ρ

2 I and A − BR−1BTΠ −
ρ

2 I are Hur-
witz, respectively. Thus, there exists a unique s(0) such that s ∈

Cρ/2([0, ∞),Rn). It is straightforward that x̄ ∈ Cρ/2([0, ∞),Rn).
By the argument in the proof of Theorem 4.1, (i) follows. (i)⇒(ii).
The proof of this part is similar to that of (i)⇒(ii) in Theorem 4.2.

(ii)⇒(iii). Since Π ≥ 0, there exists an orthogonal U such that

UTΠU =

[
0 0
0 Π2

]
, where Π2 > 0. From (21),

ρUTΠU =(UT ĀU)TUTΠU + UTΠUUT ĀU

+ UT Q̄U, (C.6)

where Ā ∆
= A+ G− BR−1BTΠ, Q̄ = Q − Ξ + ΠBR−1BTΠ . Denote

UT ĀU =

[
Ā11 Ā12
¯ ¯

]
, UT Q̄U =

[
Q̄11 Q̄12
¯ ¯

]
.
A21 A22 Q21 Q22
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H

H

H

H

H

H

H

H

H
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L
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M

M

M
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W

W

W

W

W

W

Y

Y

Z

Z

Z

By pre- and post-multiplying by ξ T and ξ where ξ = [ξ T
1 , 0]T , it

follows that

0 = ρξ TUTΠUξ = ξ TUT Q̄ Uξ .

From the arbitrariness of ξ1, we obtain Q̄11 = 0. Since Q̄ is semi-
ositive definite, then Q̄12 = Q̄21 = 0, and Q̄22 ≥ 0. By comparing
ach block matrix of both sides of (C.6), we obtain Ā21 = 0. It
ollows from (C.6) that

Π2 = Π2Ā22 + ĀT
22Π2 + Q̄22. (C.7)

Let ζ = [ζ T
1 , ζ T

2 ]
T

= UT ȳ∗, where ȳ∗ satisfies ˙̄y∗
= Āȳ∗. Then

e have

1̇ = Ā11ζ1 + Ā12ζ2,

2̇ = Ā22ζ2.

y Lemma 4.1 of Wonham (1968), the detectability of (A+G, (Q −

)1/2) implies the detectability of (Ā, Q̄ 1/2). Take ζ (0) = ξ =

ξ T
1 , 0]T . Then Q̄ 1/2ȳ = Q̄ 1/2Uζ = 0, which together with the
etectability of (Ā, Q̄ 1/2) implies ζ1 → 0 and Ā11 is Hurwitz.
enote S(t) = e−ρtζ T

2 Π2ζ2. By (C.7),

(T ) − S(0) = −

∫ T

0
ζ T
2 (t)Q̄22ζ2(t)dt ≤ 0,

hich implies limt→∞ S(t) exists. By a similar argument with the
roof of Theorem 4.2, we obtain limt0→∞ e−ρt0

ζ2(t0)
2

Π2,T (0)
= 0

nd Π2,T (0) > 0, which gives ζ2 → 0 and Ā22 is Hurwitz. This
ith the fact that Ā11 is Hurwitz gives that ζ is stable, which leads
o (iii). □
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